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EXISTENTIALLY CLOSED STRUCTURES 
A N D  JENSEN'S PRINCIPLE O 

BY 

ANGUS MACINTYRE t 

ABSTRAC"r 

Assume V = L, or even (>,,t, there is no uncountable locally finite group which 
can be embedded in every uncountable universal locally finite group. Similar 
results hold for existentially closed groups and division rings. 

O. Introduction 

In [8] Shelah and I proved that in each cardinal r > n 0  there are 2" 

non-isomorphic universal locally finite groups. This answered a question of 

Kegel and Wehrfritz [7]. In fact we provided rather  more detailed algebraic 

information. Namely, there is a locally finite group H of cardinal N1 such that in 

each cardinal K > n0 there is a universal locally finite group G which has no 

subgroup isomorphic to H. This gives two non-isomorphic universal locally finite 

groups of cardinal K, since it is known on general grounds that there is a 

universal locally finite group of power K with H as a subgroup. 

We found such an H which is 2-step solvable and of exponent  6. We wondered 

if H could be chosen abelian. Philip Hall [5] had shown that all countable locally 

finite groups are embeddable  in all universal locally finite groups, so we posed 

the following 

PROBLEM. Which locally finite groups H are embeddable  in all universal 

locally finite groups of cardinal => card(H)?  

Let us call such groups inevitable. In the present paper  I contribute to the 

above problem the following: 

THEOREM. Assume  V =  L. There are no inevitable abelian groups of  

cardinal 1,ll. 

' Partially supported by NSF. 
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So, assuming V =  L, the 2-step solvable group mentioned above can be 

replaced by any locally finite abelian group of cardinal Nx. 

I do not know if V = L is needed for this. 

The method applies not only to universal locally finite groups but also to 

existentially closed groups and division rings [6]. I give a uniform presentation 

for all three classes. 

Note added in proof, August 18, 1976. Much stronger results have now been 

obtained for groups and locally finite groups. Independently of my work, 

Kenneth Hickin of Michigan State proved Theorem 1 for locally finite groups 

using only ZFC. Somewhat later, at the group theory meeting in Oxford, in July 

1976, Shelah proved Theorem 1 for groups, using only ZFC + CH. Both workers 

use much "slower" (and more subtle) enumerations than I do, and in addition 

Shelah uses some very deep results of Ziegler on e.c. groups. So far there are no 

improvements in the case of division rings. The analogue of Shelah's result may 

need some version of Higman's embedding theorem for division rings. 

Both workers obtained many other interesting results. For example, Shelah 

proved that there are no uncountable inevitable locally finite groups. 

1. Basic concepts 

I refer to [6] for all the model-theoretic ideas needed in this paper. 

1.1. Let (r be a class of structures for a countable language ~. ~ will be 

either 

i) the class of existentially closed groups, 

ii) the class of existentially closed division rings, 

iii) the class of universal locally finite groups. 

Note that (iii) is in fact the class of existentially closed locally finite groups, as 
pointed out in [8]. 

I will isolate certain axioms on the class ~, and use only these in the sequel. 
The first is 

(UC): ~8 is closed under union of chains. 

1.2. Centralizers. In each of the above cases we have the notion of the 

centralizer of a set of elements. I will look at this quite abstractly, as follows. 

For each ~ in ~ we have a map 

x .  

from the power set of dg to itself. 
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C.~(X) is the called the centralizer of X in dr. The following axioms are 

assumed: 

(Ord): X C Y ~ C ~ ( Y ) C  C.~(X) 

(Lim) Suppose (./,/~: A < / z )  is an increasing chain in ~, and ~ = [,.J~<,d~,. 

Suppose X C_ ~0. Then 

c~,(x)= U c , ~ , ( x n ~ ) .  
A<b~ 

Note that Lim trivially implies that if .,~, N E ~ and .,~ C N and X _C ~ then 

c~,(x) c_ c,~(x). 
Let me say that X is abelian in ~ if X C C~ (X). By the preceding remark, the 

phrase "in J,/" may be dropped. 

Ord and Lim are of course true for the classes (i), (ii), (iii) with the 

conventional interpretation of centralizer. 

1.3. Now I impose another axiom on centralizers. This holds for (i), (ii), (iii), 

but the verification is not trivial. I call the principle BPW after Boffa, Van Praag, 

and Wheeler, who obtained weaker versions of it for (i) and (ii) in [2, 3, 6]. 

(BPW) Suppose ~t E cr ~ countable. Suppose Xj, j E to, are subsets of 

such that no Xj is contained in a finitely generated substructure of .,r Then there 

is a proper countable extension N of ~ ,  .A c in ~, such that 

a) Cx (X~) = C~ (Xj) for ] E to, 

and 

b) Xj is not included in a finitely generated subset of N, for j in to. 

I will prove BPW later later for (i), (ii), (iii), with the standard interpretation of 

centralizers. In those cases, N can be chosen isomorphic to J,/. 

2. Applying 

I refer to Devlin [4] for all one needs to know on stationary sets and the Jensen 

combinatorial principles. 

2.1. I will be using 

(O~,): There are sets Sa (a < o~1) such that S~ _Cot and for any X _C to1 

{tr < tOl: X f3 a = S,} is stationary in o~. 

Jensen proved that O~, holds in ZFC + V = L. 

I write ~ for ~-1 in this paper, and fix once and for all sets Sa as above. 
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2.2. LEMMA 1. Assume UC, Ord, Lim, BPW, and O. Let ~t E ~g, ~t 

countable. Then there exists N in qg, Jlt C W, Jr of cardinal 1~, such that every 

abelian subset of N is countable. 

PROOF. Let A,, a < to1, be the limit ordinals < to1, in increasing order. I may 

assume that the domain of M is to, i.e. Ao. I will construct an increasing chain .gg~, 

a < to1 of members of c~ such that 

a) ~0 = ~ ; 
b) ~ ,  has domain A~; 

c) ~ ,  = U o < , ~ o  if a is a limit; 

d) for each a < to1, and each /3 _-< A~, either So is included in a finitely 

generated substructure of ~ , ,  or 

c,.,..+,(&) = c~  ( & )  

and So is not included in a finitely generated substructure of M,+I. 

The existence of such a chain is immediate from BPW, UC, Ord, and Lim. 

Let N = U . . . .  M,. Then f f  is in ~, by UC, and has domain to1, whence 

cardinal •1. 

Now let X be any subset of X. By ~ ,  the set 

s ={/3 < ~ , : x  n/3 = &} 

is stationary in to1. 

Suppose Cx(X) is countable. I will deduce that X is countable. 

By Ord, if/3 E S then CN(So) is uncountable. By Lim, there exists y >/3  such 

that 

c,~,+,(&) / c,,(so). 

But then So is included in a finitely generated substructure of My. But then by 

our construction $o is included in a finitely generated substructure of M0. 

If/3 is a limit, S 0 must be included in a finitely generated substructure of some 

JL, z </3.In this case, let [(/3)= the least such z. T h e n / ( / 3 )  </3. 

Let S' consist of the limit ordinals in S. Then S' is stationary. By Fodor 's  

Theorem [4], [ is constant on some stationary T C S'. L e t / ( 8 )  = yo, for 8 in T. 

But then X = Ue~TX M S~ C ~/g-,0, so X is countable, as required. 

This proves the lemma, for if X is abelian and uncountable Cx(X) is 

uncountable. 
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3. Establishing BPW 

I now prove BPW for classes (i), (ii), (iii). The basic idea is the same in all 

cases, but (iii) requires a slightly different preliminary treatment,  due to the 

failure of the amalgamation property for locally finite groups [9]. (i) and (ii) can 

be handled together by minor modifications of the methods of Boffa, Van Praag 

and Wheeler  cited earlier. 

3.1. Assume now c~ is one of the classesof 1.1. For al, �9 ' ", a,  E d / ~  c~, let 

( a l , . . . ,  a , )  be the substructure of .,R generated by a l , . . . ,  a,. 

LEMMA 2. Suppose ~ E cd and a~, . . ", a,, a, b, c E al l .  Suppose 

a, b, cf:. (a~, . . . ,  a,). Then there is an inner automorphism cr of ,R such that 

o-(a, ) = a,, 1 -< i =< n, 

b ~  (a l , . . . ,  a,, tr(a)), 

and 

cr(a)c~ co'(a). 

Moreover, or(a) can be chosen to lie outside any prescribed finitely generated 

substructure A of ,R. 

PaooF. Let H = ( a l , . . . ,  a,) ,  and let G be the substructure generated by 

a l , "  ", a,, a, b, c and A. Let K = G . , G ,  the free product of two copies of G, 

amalgamating H. The intended meaning of K is clear in cases (i) and (ii). In (iii) g 

give K the same meaning as in (i), i.e. K is the usual group amalgam. In this case 

K is not locally finite, so I have to do a special argument below. 

In each case, G can be construed as a substructure of K via 

G , , G  

\ 
G 

Let qb: G---)K be the other natural embedding 

G ,,,G 

G 

In all cases ok(h) = h for h ~ H. From the general theory of free products for 

groups and fields, one has in all cases 
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b ~  ( a l , ' '  ", a,, th(a)), 

4~(a). c ~  c . ~b(a), 

and 4,(a) ~ A. 

Now I finish the proof for (i) and (ii). Using amalgamation one gets an 

extension .,/~' of ~ ,  with ~ ' E  ~, and an extension 4: K - - - ~ '  which is the 

identity on G. From the general theory of existentially closed groups and 

division rings [6], it follows that there is an inner automorphism of .,r which 

restricts to the map 

g ~ ~6(g)  

on G. 

Note that b ~  (a~, . . . ,  a~, Otk(a)), 

and 

O~b(a). c ~  c .  Orb(a), 

qJ~b(a) ~ A. 

So there is an element t of .~ '  such that bf~ ( a x , . . . ,  a,, t-~at), 

t - la t  �9 c ~  c . t - lat ,  

and t-~at~_ A. 

Select generators 81," �9 ", 6k for A. By general theory [6], there exists u, v in .,/g' 

such that 

u - l b u ~  b, 

u-~a~u = a~, 1 <= i <- n 

u - l t - l a t u  = t - la t  

v - l t - l a t v  ~ t - la t  

v-18jv = ~, 1 <= j <- k. 

Since ~ is existentially closed, ~ < l ~ t ' ,  so one could have chosen t, u, v in ~ .  

Let t r (x )=  t - l x t  and the lemma is proved. 

The problem for (iii) is that one cannot embed K in any ./g' in ~. So one has to 

replace K by a suitable finite F. This is made possible by results of Baumslag [1] 

and Neumann [9]. Since G is finite, K is residually finite, by [1, theorem 2]. It 

follows that there is a finite group F1 and a homomorphism bm~: K---~F~ such that 

/z~ is a monomorphism on G and on th(G), and ~ b ( a )  �9 ~/x~(c) �9 

Next, take F2 as a permutational amalgam of two copies of G over H. See [9, p. 
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479] for details. Let p,2:K--~F2 be the canonical epimorphism. By [9, p. 479], F2 

is finite, ix2 is a monomorphism on G and ~b(G), 

/z2(b) ~ (/z2(a~),... ,/z2(a.),/x2(k(a)) 

and /z2~b(a) ~ tx2(A). 

Let F = F1 x F2, and /z = ~.'1'1 X /.L2. 

Then F is finite, and /~ is a monomorphism on G and t~(G), 

(b) ~ (/z (a~), �9 �9 (a , ) , /~b (a)) 

/z~b(a)./.t (c) ~ / z  (c)./z~b(a), and /z~b(a) ~ / z  (A). 

One can take /z  to be the identity on G, so G C_ F. Now I just reproduce the 

final argument given for (i) and (ii), but replacing K by F. In fact, I can take 

At' = M since F is finite. 

3.2. Now I can prove (BPW), or rather the inside-out version of it. 

LEMMA 3. Suppose cr is (i), (ii), or (iii). Suppose At ~ ~, At countable, and Xj, 

j E to, are subsets of d~ such that no Xj is cntained in a finitely generated 

substructure of ds Let b be a non-central element of At. Then there is a substructure 

JR' of d~ such that bf~ d~', and an isomorphism At--~ d~' of d/t onto d~' such that 

a) C~ (Xj') = C~,(Xj') 

where X /  is the image of Xj, and 

b) Xj' is not contained in any finitely generated substructure of JR. 

PROOF. (Following Boffa [2], but with extra complications.) 

Put on At a well-ordering of type to. When I say "least"  I mean with respect to 

this well-ordering. 

Put on the set ~ of finitely generated substructures of d,t a well-ordering of 

type to, as A0,A1, . . - ,A, , . . . .  n < to. 

Define inductively a sequence (a,),<~ as follows: a2, is the least element of 

At - (ao," �9 ", a2.-1); a.+, is the least element of Xk - (as, �9 �9 a2,), where k is the 

largest integer ] such that 2 j divides n + 1. 

Using Lemma 2, one can define inductively a sequence (a'),<| elements of 

At such that 

(a) ( ao , ' '  ", a . )  ~ (a~ , . . . , a ' . )  

via an inner automorphism o'. of ~ sending a, to a'i; 

(/3) b ~  (a~,- - . ,  a ' ) ;  
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(7) if n + 1 = 2 j -(2l + 1), 

then a~',+l~At and a~'.+l does not commute with the first element of M -  

(a~,. �9 a~,) which commutes with every member of tr,(Xj n (ao, . . . ,  an)). 

Let M' be the substructure of M generated by (a ! n E to). Clearly M' ~ M and 

b ~  J//'. 

Fix the isomorphism ~ - ~ t '  given by the union of the tr,. Let X'j be the image 

of X i. By considering (7) at all stages n = T(2I  + 1 ) -  1 for fixed j, one sees that 

C~,(X~) = C~(X)). Similarly, at n = T(2I  + 1 ) -  1, one arranges that X ~ A , .  So 

X'  I is not included in any finitely generated substructure of ~//. 

This proves the lemma. 

COROLLARY. (BPW) holds for (i), (ii), (iii), and X can be chosen isomorphic 

to ~ .  

PROOF. Turn the preceding outside in. 

4. The main theorem 

Henceforward ~ is (i), (ii), or (iii), and centralizer has its usual meaning. 

Recall that it is known that if M C ~r, with &t, N E ~, and if .//, N embed the 

same finitely generated substructures then ./,t <~jr  See [6, 8]. So, by inspecting 

the proof of Lemma 1 and using the corollary to Lemma 3, one sees that in 

Lemma 1 one can arrange M <| 

Recall also that in Lemma 1 one actually proved that if Cx(X)  is uncountable 

then X is countable. 

So one has: 

THEOREM 1. Assume V = L. Suppose JR E ~, JR countable. Then there exists 

N E c~, M<| .A c of cardinal 1,11, such that if CN(X) is uncountable then X is 

countable. In particular, every abelian substructure of 3 c is countable. 

NOTE. In cases (i) or (ii), if M is generic for finite (resp. infinite) forcing, then 

so is N. See [6]. 

DEFINITION (Fix ~).  Suppose s / i s  an ~-s t ructure  embeddable in a member  

of ~. M is qg-inevitable if M is embeddable in every member of ~ of cardinal 

=> cardinal of M. 

THEOREM 2. (Fix ~).  Assume V = L. Ifs~ is abelian of cardinal 1~1, then ~ is 

not c~-inevitable. 
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5. Conclusion 

I conclude with two obvious problems. 

1) Can Theorems 1 and 2 be proved in ZFC, or ZFC + CH? 

2) Can ~ in Theorem 1 be replaced by larger cardinals? 

It is natural to try to use morasses on the second problem. 

REFERENCES 

1. G. Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. 
Amer. Math. Soc. 106(1963), 193-209. 

2. M. Boffa, A note on existentially complete division rings, to appear in a Springer Lecture Notes 
volume edited by Saracino and Weisspfenning, in memory of Abraham Robinson. 

3. M. Boffa and P. Van Praag, Sur les sous-champs maximaux des corps g~n~riques d~nombrable, 
C. R. Acad. Sc. Paris 275(1972), 947-947. 

4. K. Devlin, Aspects of Constructibility, Springer Lecture Notes in Mathematics, Vol. 354, 
Berlin-Heidelberg-New York, 1973. 

5. P. Hail, Some constructions for locally finite groups, J. London Math. Soc. 34(1959), 305-319. 
6. J. Hirschfeld and W. H. Wheeler, Forcing, arithmetic, division rings, Springer Lecture Notes 

in Mathematics, Vol. 454, Berlin-Heidelberg-New York, 1975. 
7. O. Kegel and B. Wehrfritz, Locally Finite Groups, North Holland, 1973. 
8. A. Macintyre and S. Shelah, Uncountable universal locally finite groups, submitted to J. 

Algebra. 
9. B. H. Neumann, On amalgams of periodic groups, Proc. Roy. Soc. London, Ser. A. 255(1960), 

477-489. 

YALE UNIVERSITY 
NEW HAVEN, CONNECTICUT 06520 USA 

AND 

THE INSTITUTE FOR ADVANCED STUDY 
PRINCETON, NEW JERSEY 08540 USA 


